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Problems and solutions in electrolyte crystal growth
Kinetics
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As far as crystal growth is concerned, electrolytes differ from nonelectrolytes in several aspects, of which the most
important are that a growth unit consists of more than one particle, and that interactions between ions are of long range.
This raises questions about the validity of current theories and calls for modifications of kinetic expressions. On the other
hand, electrolyte systems offer possibilities of convenient experimental methods such as recording of electrical conductance
or electrode potentials during a crystallization process. Practical examples from studies of sparingly soluble carbonates and

phosphates are presented and discussed.
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1. Introduction

When theories of crystal growth kinetics were first
established, they were based on nonelectrolytes. There are
two obvious reasons for that: first, that in this case growth
units are single molecules, and second, that interactions
between neutral molecules fall off with distance so quickly
that it is a reasonable approximation to consider only
interactions between nearest neighbours in the crystal. A
growth unit of an electrolyte consists of at least one cation
and one anion like e.g. AgCl or BaSO,, and often more,
for instance a total of 9 for apatite, CasOH(PO,);. The
electrostatic interaction between ions is of much longer
range than the interaction between neutral molecules,
which is furthermore always attractive except at very close
approach, whereas ions of the same sign, as well known,
repel each other. This makes the nearest-neighbour
approximation very poor for electrolyte crystals.

Terrace Step

Kink

Fig. 1. Growing crystal.

We may illustrate the situation by considering a
growing crystal with simple cubic structure (Fig. 1). When

a growth unit or single ion is adsorbed at a regular lattice
position on the terrace, it has 1 nearest neighbour, at the
step it has 2 and at the kink (growth site) 3. If the nearest-
neighbour interaction energy is ¢ (< 0), then the potential
energies at the three sites are ¢, 2¢ and 3¢, respectively, in
the nearest-neighbour approximation. For a single ion on a
(100) face of an ionic crystal with NaCl structure Kossel
[1] and Stranski [2] found the corresponding values
0.0662¢, 0.1807¢ and 0.8738¢. For a whole growth unit,
i.e. a pair of ions at neighbouring sites, the values are
1.1324¢, 1.3614¢p and 1.7476¢. These values include
purely electrostatic interactions only; a precise treatment
should consider Born repulsion and dispersive and
vibrational energies as well [3,4]. Finally, since electrolyte
crystals often grow from aqueous solution, crystal-water
interaction is important too [5,6].

With electrolytes of low solubility additional
problems arise. First, such crystals often require much
higher supersaturation to grow at a measurable rate than
crystals of a highly soluble substance like NaCl or
KH,PO,. This fact invalidates certain approximations
frequently made to simplify kinetic analyses. For instance,
the approximation In f = £ - 1, where S is the saturation
ratio (to be defined precisely below) is in error by more
than 50 % for f > 2.15, which is a rather low
supersaturation for a sparingly soluble electrolyte. Second,
solutions from which crystal growth takes place need not
be congruent, i.e. contain the ion constituents in the same
proportion as in the crystal. Crystal growth kinetics of a
biologically important compound like apatite, of which the
growth unit consists of 5 Ca2+, 3 PO43' and 1 OH, is of
interest chiefly in neutral medium (pH = 7), where the
dominating phosphate species are H,PO; and HPO4*, and
the concentration of hydroxide ion is very low.
Furthermore, in actual biological fluids the total phosphate
concentration is often higher than that of calcium. This
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forces us to focus on the question of rate-determining step
with particular emphasis on the ionic species which limits
growth rate.

On the other hand, electrolytes offer experimental
methods not available for nonelectrolytes. Measurements
of electrochemical properties like electrical conductance
and electrode potential are particularly useful in mass
crystallization experiments. In addition to a short account
of such methods, the aim of the present contribution is to
point out where and how current theories of crystal growth
should be revised to account adequately for the growth of
electrolyte crystals. Not everything that follows is novel,
but the implications of specific electrolyte properties are
often ignored even in recent work.

2. Basic theory of crystal growth from
solution

The rate of growth R of a crystal is the velocity of
advancement of a crystal face in the direction
perpendicular to the face. If the crystal habit includes more
than one form (set of symmetrically equivalent faces),
different faces will normally have different growth rates.
In a mass crystallization experiment the result will
typically be an average growth rate.

2.1 Thermodynamics of dissolved electrolytes
The driving force for crystal growth from solution is

the excess of chemical potential of the crystallizing solute
over that of the crystal:

Ap=pu—p (1)
where the chemical potential of an electrolyte equals the

sum of the potentials of its ion constituents. Let the
chemical formula be M, X,, then

1= muy, + Xy, =muy +xuy + RTInalay (2)

where uy° and ux® are the standard chemical potentials
and ay and ax the activities of the ion constituents in
solution. In a saturated solution the chemical potential
equals 4%, and the ion activity product is the solubility
product K,. If we define the saturation ratio S by

RTInp=Au 3)

we have
4)

Often supersaturation is expressed as mean saturation ratio
per ion constituent, S. It is related to S by

IB — Sm+x (5)

For nonelectrolyte systems # and S are identical, and for a
congruent solution S may be taken as the actual
concentration of the electrolyte divided by its solubility,
provided that the activity coefficients in the actual
solutions are nearly equal to those of the saturated
solution. This is often a reasonable assumption for highly
soluble substances. Another way to determine S in such
cases is to use the approximate relation [7]

A H
InS =—2—AT (6)

€q

where the numerator is the integral heat (enthalpy) of
solution of 1 mol of solute in the amount of solvent to give
the actual concentration, and AT is the supercooling in K
below the saturation temperature T,

2.2 Kinetic growth laws

It is sometimes found that the growth rate R of a
crystal is proportional to the relative supersaturation o = S
- 1 in a range of supersaturations. This is termed the linear
growth law and is normally interpreted as the consequence
of a high degree of roughness of the crystal surface,
making volume diffusion the rate-determining step. Two
other basic laws are generally recognized: the "parabolic"
and the "exponential" law. The former draws its name
from the fact that R is often proportional to ¢* at low
supersaturation. It is connected with the presence on the
crystal face of a spiral-shaped step, a growth spiral, arising
from a screw dislocation in the crystal. The theory of this
growth mechanism was established by Burton, Cabrera
and Frank [8] (BCF) and further developed by Chernov
[9], Gilmer, Ghez and Cabrera [10], Bennema and Gilmer
[11] and van der Eerden [12], among others. These
versions of the theory of spiral growth all predict both first
order (linear) and second order (parabolic) dependence of
growth rate on relative supersaturation. Some of the
special, limiting cases yield, however, an expression of the
form

R=b(f-1)Inp @)

which for sufficiently low supersaturations may be
approximated to R = bo”. b is a temperature-dependent rate
constant.

The "exponential" law is a consequence of the
mechanism of crystal growth by surface nucleation on a
perfect crystal face or between the steps of a growth spiral.
Nucleation means the formation of nuclei, which are
groups or "islands" of growth units in contact with each
other, but separated from other such groups. A small
nucleus is unstable and will tend to dissolve, a large
nucleus will tend to grow, and between the two is the
critical nucleus, which is in unstable equilibrium with the
surrounding medium. Its size is related to supersaturation
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through the two-dimensional Gibbs-Kelvin equation

KT p=25 (8)
r

where 4 is the edge free energy of the nucleus, i.e. the
Helmbholtz free energy per unit length of a monomolecular
step,S is the area occupied by one growth unit at the
crystal surface and r is the radius of a circular nucleus or
half the edge length of a square nucleus. This quantity
further determines the distance y, between steps of a
growth spiral; we have

Vo =197 )

for both rounded and polygonized spirals [13,14]. The
theory of surface nucleation dates back to the classical
works of Becker and Doring [15] and of Volmer [16]. It
was further developed for crystal growth from the vapour
by Kaischev [17], whose expression for the frequency per
unit area of two-dimensional nucleation per unit area on a
crystal surface may be written

LZ‘E (10)
(kT Inp

where g is a geometric factor equal to 4 for a square
nucleus and =z for a circular nucleus.

If only one growing embryo were present on the
crystal face at a time, then growth rate R would be
proportional to the rate of two-dimensional nucleation as
given by (10); this case is known as the mononuclear
mechanism. However, R would also be proportional to the
area of the face, meaning that crystal growth would
accelerate with increasing crystal size. Such behaviour is
not normally observed. To solve this problem Hillig [18]
proposed for crystal growth from the melt the polynuclear
mechanism, where several growing nuclei are present on
the crystal face at the same time. R is then determined by
both rate of nucleation J and rate of advancement v of
growth steps across the crystal face, and we have

J =k p(np)"” exp[—

4 1/3
R=(§j J"vd (11)

where d is the thickness of a growth layer. From this
relation Simon, Grassi and Boistelle [19] established for
crystal growth from solution an expression which may be
written

_ U3(p_1)2/3 1/6 <Dl — g/12§ 12
R=k,B"(p-1)"(Inp) ep[ —3(kT)21nﬂJ( )

Nielsen obtained a similar expression, but with f replaced

by S and the first factor to the power of 7/6 instead of 1/3
[20].

As already indicated above, surface nucleation may take
place on a perfect crystal face as well as between the steps
of a growth spiral. The resulting growth rate is not simply
the sum of the contributions from spiral growth and from
surface nucleation. Instead, they combine according to
Gilmer's equation [21]

R Rr
PE + J =1 (13)

where R, is the growth rate by surface nucleation only, and
Ry is similarly the rate of spiral growth only. 7 is the time it
takes to fill completely a layer of thickness d; thus, the
overall growth rate equals R = d/z.

2.3 Traditional approaches

It is not uncommon to see the term "parabolic" for the
kinetic law of spiral growth taken literally. R is plotted as a
function of S - 1 in a log-log plot and kinetics determined
from the slope of the plot: 1 means linear law (rough
surface), 2 means parabolic law (spiral growth), and a
higher value means exponential law. This must be
regarded as an oversimplification of crystal growth
kinetics, which often leads to false conclusions. As a
practical example we may consider the crystal growth
kinetics of the cadmium phosphate CdsH,(PO,4)4,4H,0
(Fig. 2), determined by mass crystallization experiments
[22,23]. The growth unit consists of 9 ions: 5 Cd*", 2
HPO,* and 2 PO.*, so p= S°. The slope of the dotted line
marked "linear" is 1 and that of the dashed line marked
"parabolic" is 2.
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Fig. 2. Log-log plot of growth kinetics of cadmium

phosphate crystals. Squares: experimental points. Full

line: best fit for spiral growth according to theory (see
text).

It is evident from the graph that there is a change in
kinetics above S = 3. It is also evident that neither the
linear nor the parabolic growth law fits the experimental
data. The expression for the curve of best fit will be given
in the next section.
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Fig. 3. Similar to Fig. 2, results from another
experiment. Full line: best fit for surface nucleation
kinetics (see text). Dashed and dotted lines: linear fits.

An example of the "exponential" law is shown in
Fig. 3. The nonlinear dependence is evident. However, if a
linear fit is made for the 7 points at highest supersaturation
(dotted line), a slope not significantly different from 2 is
found. This clearly illustrates the risk of false conclusions
using this method.

A more rational approach in mass crystallization
involves the notion of chronomals (chronometric integrals)
originally introduced by O'Rourke and Johnson [24] and
further developed by Nielsen [25,26]. However, its
practical use is often based on simplyfying assumptions
like those of the log-log plot, and generalizations are not
straightforward [27].

3. Electrolyte crystal growth

We shall now consider in detail the problems and
possibilities outlined in the Introduction, starting with a
short account of the available experimental methods and
then continue with modifications of the theory to deal with
crystal growth of electrolytes. Assuming that we can take
over the form of the rate expressions listed above, the
primary question will be where to replace f by another
quantity, e.g. S or a concentration or activity of a dissolved
species. To solve this problem, it will be useful to group
the occurrences in two categories: those of thermodynamic
and those of kinetic origin.

3.1 Experimental methods

When highly soluble electrolytes are concerned, the
methods used for studying crystal growth are essentially
the same as those used for nonelectrolytes. One of the
most frequently used methods consists in placing a seed
crystal in a solution made supersaturated by cooling a
saturated solution. Growth of the crystal is followed by
direct observation through a microscope, often combined
with measurement of birefringence [28] or use of contrast
methods permitting observation of growth spirals on the
growing crystal [29,30]. Additional information may be

obtained from in situ x-ray topography [31] or
interferometry [32,33]. In recent years in situ atomic force
microscopy (AFM) has gained importance [34,35].

For sparingly soluble electrolytes sufficient
supersaturation is not readily attained by changing the
temperature of a saturated solution. Instead, two solutions
are mixed, one containing the cation, the other the anion of
the crystallizing substance, such as AgNO; and NaCl to
produce AgCl, and BaCl, and Na,SO, for BaSO,.
Furthermore, it is usually rather difficult to obtain a single
crystal of such a size that it can be handled and mounted in
a crystal growth cell. Most studies of crystal growth
kinetics of sparingly soluble electrolytes are carried out as
mass crystallization experiments, where a very large
number of growing crystals is involved. Since ions leave
the solution to enter the crystals, the electrical conductance
decreases in the course of the process, which may
accordingly be followed by conductometry. Fig. 4 shows
how conductance « varies when solutions of Ca(OH), and
HF are mixed to form fluorite, CaF, [36].
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Fig. 4. Recorded conductance values in mass
crystallization experiment with fluorite.

Another possibility exists for salts of weak acids
crystallizing from neutral or acid solution, where the anion
is protonized. For instance, the cadmium phosphate
mentioned above crystallizes according to the reaction
scheme

5 Cd* + 4 HyPO,” + 4 H,0 — CdsHy(PO,),,4H,0 + 4 H'

and the protons liberated in the process will lower pH of
the solution. Knowing the solubility product of the
crystallizing phase and the dissociation constants of
phosphoric acid as well as other relevant equilibrium
constants of the system, it is possible from the recorded
pH values to calculate the residual supersaturation and the
amount of solid crystallized at any time during the process.
Fig. 5 shows recorded pH values versus time for the
experiment, of which the kinetic results are illustrated in
Fig. 2 [23].
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Fig. 5. pH recording in cadmium phosphate
crystallization experiment.

Crystal growth may be initiated either by free
crystallization, in which solutions are mixed and the
growth of the crystals actually formed is studied,
represented by the above studies of fluorite and cadmium
phosphate, or by seeding, i.e. adding to a supersaturated
solution a sample of well-characterized crystals. The latter
is often combined with the constant-composition method,
in which reagents are added to the system such as to
compensate exactly for the consumption of solute by the
growing crystals [37]. A particularly simple example of
this method is the study of crystal growth of octacalcium
phosphate, CasH(PO,);,2.5H,0, by seeding a suspension
of brushite, CaHPO,,2H,0, in very dilute phosphoric acid
[38]. Brushite being the most reactive of the sparingly
soluble calcium phosphates, it could be assumed that the
solution was always saturated with respect to this
compound. The progress of crystal growth was followed
by pH-static titration with calcium hydroxide solution; the
overall reaction is

6 CaHPO,4,2H,0(s) + 2 Ca(OH),(aq) —
2 Ca4H(PO4)3,2.5H20(s) +11 Hzo(l)

The system comprises 3 components (c), Viz.
Ca(OH),, H;PO, and H,0, and 2 phases (p) in equilibrium,
i.e. solution and solid brushite, whence the number f of
degrees of freedom according to Gibbs' phase rule

f=c+2-p (14)

is = 3. Two variables with definite values are pressure
and temperature. Hence, when pH is fixed the composition
of the solution is constant, and the rate of consumption of
calcium hydroxide represents the rate of crystal growth, at
least as long as the number of growing crystals is constant
and they grow homothetically, i.e. without change of
shape. This latter may be the weak point, not only in
seeded crystallization, but in all methods of mass
crystallization. In experiments with seeding it is often
observed that the apparent growth rate decreases with
time, so a decision has to be made as to which rate be
taken as representative. In the work described the initial

rate was chosen.
3.2 Thermodynamic factors

A look at the equations (3), the definition of f, and
(8), the Gibbs-Kelvin equation, points to In £ in growth
rate expressions to be of thermodynamic origin. In f may
be replaced by (m + x) In S (according to (5)) in (7), the
equation for spiral growth, and in the preexponential
factors in (10) and (12), the expressions for surface
nucleation, incorporating the factor m + x in the constants
b, ky and k,. The same substitution in (8) as well as in the

exponents of (10) and (12) means that$ should be

redefined as the average area occupied by an ion in the
growth layer.

The factor # in (10) accounts for assumed equilibrium
between the supersaturated solution and the adsorbed
growth units, and it leads to the factor £ in (12). It equals
the ratio between actual and equilibrium surface
concentration. Since in the electrolyte case f equals a
product of ion activities divided by the solubility product
according to (4), it must be replaced in this connection
by S.

3.3 Kinetic factors

The last supersaturation-dependent factor in the
kinetic expressions is £ - 1. It is connected with the rate of
advancement of steps. Unlike the thermodynamic factors
considered above, we cannot give a general expression to
replace S - 1, because we do not know in advance for a
specific electrolyte which ion is rate-determining in step
advancement. Christoffersen, Dohrup and Christoffersen
studied crystal growth and dissolution of apatite [39] and
found calcium ion to be rate-determining, though with
some additional influence from the rate of dissociation of
water molecules, providing the hydroxide ions of the
apatite crystals. Ignoring the latter effect, f - 1 should be
replaced by the difference between the concentrations of
calcium in the actual and the saturated solution, in general
terms ¢y - CM,eq-

The resulting equations are

R=bley —cye)n B (15)
for spiral growth and
_ 85 (¢
(kT Inp

for polynuclear growth. The validity of the substitution
made here will be discussed later.

R= k2S1/3(cM —cheq)m(lnﬂ)”6 exp[—

3.4 Strategy of kinetic analysis

We assume that growth rates for different solution
compositions have been measured. Tests for the different
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growth laws are then carried out:

1. Plot R against S - 1. If the plot is linear, volume
diffusion may be rate-determining. This may be checked
by estimating diffusive mass transport. If this predicts a
much higher growth rate than that found experimentally,
the limiting cases leading to linear laws of the BCF theory
and its extensions [8-12] should be considered. Thermal or
kinetic roughening are alternatives.

2. Plot R against (cm - cumeq) In B, eq. (15). If the plot
is linear, the growth mechanism is likely to be spiral
growth. Either surface diffusion or integration into the
growth site may be rate-determining. In the former case,
known as the primary law, transition to linearity at higher
supersaturation may be observed according to the BCF
theory.

3. Divide R by the three supersaturation-dependent
factors in front of the exponential in (16) and plot the
logarithm of the result against 1/In . If the plot is linear,
the growth mechanism is surface nucleation, and the edge
free energy may be determined from the slope of the plot.

4. If in item 3 only a part of the plot corresponding to
the high range of supersaturation is approximately linear,
another mechanism operates together with surface
nucleation, probably spiral growth if the slope is lower for
the rest of the plot. Use is then made of the fact that the
rate of growth by surface nucleation is negligibly low at
low supersaturation, as is evident from Fig. 3. R, is given
by (15), and following the determination of the rate
constant b from growth rates in the low range, it is
calculated for the whole range of supersaturations. The
results are inserted in (13), which is finally solved for R,
given by (16).

5. If none of the above yields satisfactory linearity of
the plots, other substitutions for £ - 1 may be tried.

Valuable information on growth mechanisms is
obtained if the system studied exhibits both spiral and
surface nucleation growth kinetics, in particular if absolute
growth rates have been determined. In mass crystallization
this necessitates knowledge of crystal size distribution.
Information on temperature dependence of rate constants
(activation energy) is of great value as well.

4. Practical examples

The simplified Christoffersen theory and its
generalization to spiral growth, expressed in eqgs. (15) and
(16), have turned out to account well for the crystal growth
kinetics of cadmium phosphate [22,23], the copper
phosphates Cu,OHPO, (libethenite) and CuHPO,H,0
[40] and brushite [41]. These substances were all studied
by free crystallization, and pH was recorded during the
process. Fig. 6 shows the data of Fig. 2 plotted according
to item 2 above, including only the low range of
supersaturations, and Fig. 7 shows the data of Fig. 3
plotted according to item 3. Both plots are linear within
experimental uncertainty, indicating spiral growth and
growth by surface nucleation, respectively.
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Fig. 6. Crystal growth rates of cadmium phosphate at
low supersaturation plotted according to (15).
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Fig. 7. Cadmium phosphate crystal growth rates plotted
according to (16). The divisor f'is the expression in front
of the exponential.

As far as crystal growth is concerned, cadmium
phosphate is a relatively uncomplicated substance to work
with. For a substance with such low solubility it readily
forms well-developed crystals, which means that crystal
size distribution can be determined with simple methods of
optical microscopy, and absolute growth rates are ecasily
obtained. In the study of seeded growth of octacalcium
phosphate in brushite suspension [38] the situation is
somewhat different. The observed kinetics includes both
spiral growth and surface nucleation, but for the latter it
has not yet been possible to find an expression of the form
(16) or (12) which could be fitted to the data in a
satisfactory way. Instead the ad hoc solution of writing the
preexponential factors as [Ca*']cp was chosen, the second
factor being the total concentration of phosphate.
Extensive analysis including temperature dependence of
spiral growth led to the conclusion that the rate-
determining step is the integration into the step of a growth
unit with a time constant of the order of seconds. This
corresponds quite well to the rate of dissociation of a
proton from a hydrogen phosphate ion in solution [42].

5. Discussion
There are good reasons for assuming that metal ions

are responsible for the rate-determining step in electrolyte
crystal growth, at least with sparingly soluble electrolytes.
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Nielsen analysed crystal growth kinetics of a large number
of electrolytes and was able to express the growth rate in
terms of the rate constant for integration of growth units
into steps [20]. He could then demonstrate a good
correlation of this quantity with the rate constant for
dehydration of the metal ion, which ranges from 3x10® s
for Rh** and 5x107 s for Cr’* to 10"’ s for Ag", TI" and
Pb*". On the average, integration was found to be 1000
times slower than dehydration. The extremely low value
for Cr'" manifests itself in the very low rate of the
transformation

CI'PO4,6H20 i CI'PO4,4H20 +2 Hzo

which takes several days [43,44].

The fact that the rate of crystal growth depends on
metal ion concentration according to (16) does not exclude
proton transfer as rate-determining, as the work of
Christoffersen et al. shows [39]. Other evidence for the
importance of this process was found in a study of the
effect of magnetic field on the crystallization of sparingly
soluble salts of both strong and weak acids [42]. An
accelerating effect was found only for the latter, and only
when the metal ion was diamagnetic. Further support was
obtained by showing the absence of a magnetic effect on
calcium carbonate crystallization at high pH, where CO5*
dominates over HCOj’, and in heavy water [45]. Cadmium
phosphate showed the effect too, as expected [46], and still
the dependence on metal ion concentration agreed with
(16). A preliminary theory [47] suggests the explanation
that approaching metal ions drive protons in the surface
layer away from growth sites.

The case of seeded growth of octacalcium phosphate
in brushite suspension [38] is still in need for a plausible
mechanism as far as the preexponential factors in the
expression for surface nucleation are concerned.

0.14

0.12
0.10 -
§. 0.08 -
D<0.06 -
0.04 1+
0.02 -

T
0 5 10 15 20
size of nucleus

Fig. 8. Electrostatic edge energy U, of a surface nucleus
on a crystal with NaCl structure. Size is given as number
of ions, and ¢ is the energy of a pair of neighbouring
ions.

Another problem is the size of the critical nucleus. Its
size, expressed in number of growth units, may be derived
from (8) and is given by

2_
* :& (17)

(kT1In B)

For the results plotted in Figs. 3 and 7 we have 4 =
26.4 pJ/m and N ranging from 1 to 7, taking g = 4 (square
nucleus). Such a range of sizes of critical nuclei is not
uncommon for crystal growth of sparingly soluble
electrolytes by surface nucleation. However, considering
the long range of electrostatic interactions, this small size
raises the question of validity of the theory, at least so far
as a definite value of 1 is concerned.

The case may be elucidated by considering a small
surface nucleus on a crystal-vacuum interface. The nucleus
is thought as being built up by moving ions one by one
from the growth site to the nucleus. The work equals the
total edge energy, and division by the perimeter of the
nucleus gives the edge energy per unit length. Fig. 8 shows
the results for a crystal with NaCl structure, calculated for
2-16 ions, corresponding to 1-8 growth units. The
variation of the contribution of purely electrostatic energy
is seen to be relatively small. Including other interactions
like Born repulsion and van der Waals forces is not likely
to increase variations. On the other hand, 1 is a free
energy, so there is a negative contribution from entropy as
well. Now the configurational entropy is largest for non-
rectangular nuclei, which also have the highest
electrostatic energy; thus, variations of free energy are
likely to be significantly smaller than those of electrostatic
energy. Finally, we consider crystal growth not from the
vapour, but from solution. The negative adhesion energy is
still another important contribution likely to suppress size-
dependent variations in edge free energy of a nucleus.
Hence there is no reason to believe that the theory is not
consistent with experiments.

We may notice, however, that the plot in Fig. 7
exhibit a few deviations from strict linearity. Such
irregularities are not uncommon in this kind of plots of
electrolyte crystal growth kinetics. They may arise from
certain sizes or configurations of small nuclei being
particularly favourable or unfavourable energetically,
yielding an edge free energy which is lower or higher,
respectively, than the average value. An unusually strong
manifestation of this effect was observed in heterogeneous
nucleation of octacalcium phosphate on brushite, where
the dependence of induction time, i.e. time lag in
nucleation, was found to follow a distinct step function
rather than a continuous function [48].
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